
Dave Prochnow, MITRE
Laura Hinton, MITRE
Anita Zabek, MITRE
Mike Willoughby, PEO STRI
Cindy Harrison, PEO STRI

NDIA 16th Annual Systems Engineering Conference
31 October 2013

Systems of Systems and Product Line
Best Practices from the DoD Modeling
and Simulation Industry

Approved for Public Release; Distribution Unlimited. 13-3693

©2013 - The MITRE Corporation. All rights reserved

 Background on Best Practices Study

 Product Lines (PLs) and Systems of Systems (SoS)

 Study Approach

 Best Practices for Complex Simulation-Based PLs or SoS

 Summary

| 2 |

.

Agenda

 This study originated when the US Army was preparing to develop a
new, complex simulation-based system

 The intent was to document best practices for creating and
managing this type of enterprise system, so that existing and
upcoming programs could leverage proven systems engineering
approaches

 Thus, the authors investigated several Product Lines (PLs) and
Systems of Systems (SoS) in the DoD simulation community to
compare current systems engineering approaches
– Each of the programs assessed had achieved success
– The programs also had some fundamental differences between

them

| 3 |

.

Background on Best Practices Study

 A software product line (PL) is “a set of software-intensive systems
that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way” –
Software Engineering Institute, Carnegie Mellon University, “Software
Product Lines,” http://www.sei.cmu/productlines/

 A Systems of Systems (SoS) is the “[integration of] independently
useful systems into a larger system that delivers unique capabilities” –
DoD Systems Engineering Guide for Systems of Systems, Version
1.0, August 2008

| 4 |

.

Product Lines and Systems of Systems

http://www.sei.cmu/productlines/

 Product Line
– Includes common assets, including software, documentation, and tools
– Uses common, well-defined interfaces for information exchange
– Focuses on variation management
– Product Line Components
 Are centrally managed and funded
 Have a primary objective of supporting the product line
 Can be directed by the product line management to make changes

 SoS
– Leverages systems that are used separately outside of the SoS
– May use one or more data models and protocols for information

exchange
– Requires significant negotiation with individual systems to make

changes
– Individual systems
 May be owned, managed, and sponsored by different organizations
 May have been developed prior to use in the SoS
 Have objectives independent from the SoS

| 5 |

.

Comparison of Product Lines and Systems of
Systems

 Live Training Transformation (LT2)
– Provides a product line for live training systems via live instrumentation, tactical

simulation, and integration with other Army architectures, such as TENA and
LVC-IA

 One Semi-Automated Forces (OneSAF)
– Provides a simulation product line that meets M&S requirements for Army

training, testing, and experimentation environments
 Joint Land Component Constructive Training Capability (JLCCTC)

– Composable distributed simulation-based environment for operationally relevant
training, with successful track record for evolving capabilities

 Live, Virtual, Constructive – Integrated Arch. (LVC-IA)
– Provides protocols, standards and interfaces to facilitate the interoperability of

currently dissimilar systems to stimulate Mission Command systems
 Modeling Architecture for Technology, Research and Experimentation (MATREX)

– Composable M&S environment including multi-fidelity simulations and tools
integrated into an established architecture supporting DoD distributed M&S

 Test and Training Enabling Architecture (TENA)
– Developed for the T&E community to enable interoperability among range

systems, facilities, simulations, and C4ISR systems

| 6 |

.

Evaluated Programs

| 7 |

.

First, data was
collected from existing
systems engineering
documents and from

interviews with
program POCs

| 8 |

 LT2 OneSAF JLCCTC LVC-IA MATREX TENA

Data Exchange
Model(s)

CTIA Object Model

Simulation Object
Runtime Database

(SORD), Military
Scenario Definition
Language (MSDL)

Federation Object
Models (FOMs),

Master Enumerations,
OBS

JLCCTC Entity Resolution
Federation (ERF) 6.0

FOM, CTIA Object Model

MATREX FOM; TENA
Object Models, SORD,

DIS via ProtoCore

Multiple TENA Object
Models

Standards
Guidance

Standards in Large
Portal Repository,
including but not

limited to CTIA, FASIT,
and LTEC

Product Line
Architecture

Specification (PLAS),
Codeveloper
Guidelines

HLA, DIS, Security
Lockdown Compliance

HLA, DIS, CTIA, SIMPLE,
SECORE, Radiant Mercury

Cross-Domain Solution

SE tool (SDD) managed
architectural guidelines,

HLA 1.3 NG, via
ProtoCore (HLA 1516,

DIS, TENA, SORD)

TENA

Risk
Management

Org

Core Asset Working
Group (CAWG)

PM OneSAF’s
Integrated Product

Team (IPT)
SE

Risk Management
Working Group

Systems Engineering
Review Board (SERB)

Architecture
Management Team

(AMT)

Integrators
and Testers

Developers, Users Developers, Users SE, Developers, Users
Designated Test Team,

Users (SMEs at Validation
Events)

Designated Test Team,
Developers

 Developers, Designated
Test Team

Integration
and Test
Events

System Integration Test
and Government

Acceptance Test for
Each Product

System Integration
Test, User Assessment

Baseline (UAB),
Validation Event

Integration Event (IE),
Validation Event (VE),
Maintenance Release

Test (MRT),
Operational Readiness

Event (ORE)

User Assessment,
Functional Verification,

Operational Accreditation

Thread Test, Vignette
Test, Operational

Readiness Exercise
 Informal

Fielding
Approach

Each Product Team
Delivers and Installs at

User Sites (Products
installed

independently)

Deliver software and
instructions to user

sites; user installs and
configures based on

their needs

Deliver software and
instructions to fielding

team (CTS); fielding
team installs

Fielding Readiness
Review, On-Site Delivery
and Installation, On-Site
Government Acceptance

Test

Users download
MATREX tools from web

site or request DVD,
then install ; M&S

distributed separately

Users download
software and manuals

from web site, then
install

Post-Fielding
Support

Help Desks (one
centralized and one for

each product);
Warfighter Focus used

to Track Issues

Help Desk, Product
Line Updates,

Customer-funded on-
site support

PTR Management
Process, Patch

Management, Web
Portal (future)

NA

E-Mail reflectors, Phone
Support, Customer-

funded extensive
support

 TENA Help Desk
(middleware), JMETC

Help Desk (Connectivity),
Middleware Updates

Major Release
Frequency

Varies by Prod. Team 12-18 months 12-18 months 2 year 6 months 2-3 years

Minor Release
Frequency

Varies by Prod Team 6-8 months 6 months None None 6-12 months

Next, the information
collected was binned

into categories
associated with

governance, artifacts,
and tools

 Data was then analyzed to discern best practices associated with the
following areas:
– Creation, maintenance, and evolution of the complex simulation-

based system
 Requirements definition
 Conversion of PL or SoS requirements into specific requirements for

individual components or systems, respectively
 Definition of standards and guidance for implementing changes
 Testing and validating the products or SoS
 Fielding of the products or SoS

– Usage of such a system
 Provision of appropriate system configuration/composition tools
 Determination of necessary pre-event activities
 Methodologies for initialization, execution, and data collection
 Guidance on after-action review and other post-event activities

| 9 |

.

Development of the Best Practices

 When a complex simulation-based system is first developed, a key
early decision is whether it will use a PL approach or an SoS
approach
– Relevant factors for this decision include:
 Anticipated lifecycle of the required solution
 Date at which an initial capability is needed
 Resources available for the initial planning and development
 Existing systems or components that can meet any of the overall system

requirements

– If the system is expected to be around for a long time and a
program can afford the initial investment, then a PL approach may
be better since long-term savings can outweigh the initial cost

– If the system capability is needed very soon, then creation of a
System of Systems out of existing applications may be best

– This decision affects the entire life of the program!

| 10 |

.

Best Practice for Creating a New Complex
Simulation-Based System

 The PL or SoS should be managed as an entity in and of itself
 Standards should be identified, established, publicized, and enforced to

facilitate development and integration of the necessary components
– The rigorous management, development, and adherence to

architectures, specified by architectural artifacts, are critical to all
complex simulation-based systems

– While individual systems or individual components may use their own
software approaches internally, their interfaces to other systems or
components must follow architectural specifications.

 It is critical to align acquisition strategy with implementation approach
– Example 1: In a PL, because of the desire for common core assets,

separate contractors should not be tasked with work that will result in
redundant functionality

– Example 2: In a SoS, if new or modified functionality requires changes
to more than one system, it is imperative that all systems are funded
appropriately

 The program must invest in Operations and Support (O&S) to manage
and support the complex simulation-based system

| 11 |

.

General Best Practices for Both PLs and SoS

 Management of the product line must include both management of
the core assets and management of the products

 Development and maintenance of a Product Line Requirements
Specification (PLRS), Product Line Architecture Specification
(PLAS), and Product Line Architecture Framework (PLAF) are key
for allowing new products to be incorporated into the architecture

 At the onset of a product line, the program manager must make a
business case for this approach

 Variation management is essential for ensuring that any changes to
the architecture, to a product, or to a core asset result in
modifications to the dependent systems that have an overall positive
impact

| 12 |

.

General Best Practices for Product Lines

 The evolution of a SoS requires a battle rhythm for evolution
– Reevaluation of requirements, technologies, and current state of the

SoS at the top of each cycle
 System synchronization is the job of the SoS Engineer

– Manage lifecycle (requirements  fielding)
– Replan throughout the cycle to resynchronize as inevitable slips or

priority changes occur
– Capture resultant SoS and shortfalls to:
 Ensure testing is focused on what is actually delivered
 Capture shortfalls and assess as potential requirements for the next cycle

 The SoS should be decomposed into functional areas that can be
decoupled from the rest of the SoS to the extent possible
– This allows work on different functional areas in parallel within a cycle
– Changes in one functional area should have no or limited impact on

the rest of the SoS
– SoS Engineer should plan individual system delivery and SoS

integration activity in functional area lanes

| 13 |

.

General Best Practices for Systems of Systems
(SoS)

 Upfront consideration of requirements should be broad and flexible
 Requirements should express a desired capability and not propose a technical or

specific solution
 Users, testers, and developers should have a mechanism for submitting problem

reports that can serve as potential requirements
 Sponsors and other stakeholders should have a mechanism for defining high-

level direction
 Users groups provide a useful forum for identifying issues and their associated

priorities
 There must be a clearly defined process for narrowing down requirements to fit

within funding constraints
 A systems engineering team should manage a tracking system for all

requirements and their associated status
– This requires collaboration with users, developers, and testers

 For PLs, requirements outline should be reflective of the product line architecture
– Supports the requirements allocation process
– Supports explicit recognition of common core assets

| 14 |

.

Best Practices for Requirements Definition

Refer to backup slides or technical report for additional best practices

 For each requirement, the systems engineer works
– With persons who submit a problem report or enhancement request

to fully understand the issue
– With users to understand the priority
– With developers to understand possible solutions

 For a PL, the systems engineer works with the product developer to
determine which core assets require modification to achieve the desired
capability

 For a SoS, the systems engineer manages the development of one or
more concepts for meeting a SoS requirement

 Determination of whether or not to resolve an issue in the next release
depends on its priority, risk to the rest of the system, and resources
required to implement the change

 For changes that will proceed, specific tasking is documented for each of
the individual components/systems being changed or added

| 15

Best Practices for Converting PL or SoS Requirements into
Requirements for Individual Components/Systems

Refer to backup slides or technical report for additional best practices

 Interfaces between individual systems must be well documented, using
some combination of data exchange model, Interface Control Document,
sequence diagrams, and use cases

 Use cases drive decisions associated with deployment and
composability
– A user might select an “as is” representation of an object or behavior,

or the user may compose the object or behavior
 For a PL, the interface of product components should be documented in

a Product Line Requirements Specification (PLRS) and Product Line
Architectural Specification (PLAS)
– Complexity of the architecture should be carefully managed
 Low complexity  fewer burdens on core assets, but more constraining to

functionality that can be achieved
 High complexity  greater flexibility for new functionality, but increases

difficulty of creating and maintaining core assets
 Tools can facilitate implementation, such as code generation tools based

on data exchange model and interface protocol

| 16

.

Best Practices for Defining Standards and Providing
Guidance for Implementing Changes

Refer to backup slides or technical report for additional best practices

 Integration testing incorporates increasing complexity (number of systems, number of
interfaces) prior to system-wide integration and formal testing

 Formal testing may consist of a series of events of increasing importance (integration
event, validation event, government acceptance test)

 During formal test and integration events, the following should occur:
– Training should be provided to testers
– At the start of the event, known problem areas and workarounds should be

communicated to avoid wasting testing time
– Problem reports should be generated by testers and tracked by the sys engineer
– In additional to functional testing, conduct performance/scalability testing
– Regression testing should occur to ensure that prior functionality still works correctly

 For an SoS, integration events should be conducted to assess functionality and
interfaces associated with each new SoS version
– Prior to formal tests, the system engineer should
 Publish test objectives, data model, and any changes to the infrastructure
 Work with the developers to ensure what new functionality is mature enough for formal testing

 For a PL, separate testing can be conducted to assess functionality of each product
– Each product may be released individually, so it is not always necessary to test the

entire product line
 Testing should be conducted by an independent agent

| 17

.

Best Practices for Testing and Validating the PL or
SoS

Refer to backup slides or technical report for additional best practices

 For a PL, individual products can be fielded at separate times to the sites that will
use them

 For an SoS, the entire SoS typically gets fielded
 The program must determine the type of software delivered to the user

– Static representations or composable representations?
– Release source code too?

 Based on the complexity of a product or an SoS, different fielding approaches
have worked:
– Deliver software and documentation to site; user installs
– Designated fielding team goes to site to deliver and install system
– Designated fielding team conducts on-site survey, installs software on-site, and

then conducts a formal test at the site
 It is critical that technical support be provided to the user
 The systems engineer should also have a mechanism for collecting user feedback

after the system has been fielded
 Mechanisms should exist to provide maintenance releases or patches when

critical problems are discovered
 Some programs have also begun exploring the use of cloud computing and

virtualization, and this may significantly change the fielding approaches

| 18

Best Practices for Fielding the PL or SoS

Refer to backup slides or technical report for additional best practices

 This study led to guidance on different governance and systems
engineering approaches that can be employed for different types of
complex simulation-based programs

 This guidance is in the form of a technical report that serves as a
desktop reference
– The report may be obtained by contacting Mike Willoughby,

michael.willoughby@us.army.mil

| 19 |

.

Summary

mailto:michael.willoughby@us.army.mil

 You may contact:
– Dave Prochnow, prochnow@mitre.org
– Laura Hinton, lhinton@mitre.org
– Anita Zabek, anita@mitre.org
– Mike Willoughby, michael.willoughby@us.army.mil
– Cindy Harrison, Cynthia.Harrison@us.army.mil

| 20 |

.

Need More Information?

mailto:prochnow@mitre.org
mailto:lhinton@mitre.org
mailto:anita@mitre.org
mailto:michael.willoughby@us.army.mil
mailto:Cynthia.Harrison@us.army.mil

Backup

 Product Line
– Includes common assets, including software, documentation, and

tools
– Uses common, well-defined interfaces for information exchange
– Focuses on variation management

 Product Line Components
– Are centrally managed and funded
– Have a primary objective of supporting the product line
– Can be directed by the product line management to make

changes

| 22 |

.

Common Characteristics of Product Lines

 SoS
– Leverages systems that are used separately outside of the SoS
– May use one or more data models and protocols for information

exchange
– Requires significant negotiation with individual systems to make

changes, as SoS PM cannot direct the changes to these
components

 Individual systems
– Are owned, managed, and sponsored by different organizations
– Have frequently been developed prior to use in the SoS
– Have objectives independent from the SoS
– Require negotiation between SoS management and individual

system’s management

| 23 |

.

Common Characteristics of Systems of Systems

 Product lines are typically used when …
– It makes sense for common core assets to support the development

of related products
– A long-term strategy can be invoked
– A significant investment can be made upfront

 Systems of systems are typically used when …
– It makes sense to leverage existing systems with accepted

functionality, even if those systems were not built for the
interoperability required by the SoS

– Capability is needed in the near term

 A hybrid may also exist, in which product lines are used within a System
of Systems
– But a SoS will rarely be part of a product line
– ATEA may require a hybrid approach

| 24 |

Domains of Product Lines and Systems of
Systems

 Virtual
– No central management
– No centrally agreed upon purpose for the SoS

 Collaborative
– Components interact voluntarily (no central management)
– Have agreed upon central purpose

 Acknowledged
– Systems engineering manager/team in place
– Shared objectives
– Individual systems retain their own funding, ownership, and

management
 Directed

– SoS built and managed to fulfill specific purposes
– Central management over individual component systems

| 25 |

Types of SoS in the DoD Today

**SoS Categories come from DoD Systems Engineering Guide for Systems of Systems

| 26 |

Comparison of Programs:
Basic Characteristics

LT2 OneSAF JLCCTC LVC-IA MATREX TENA

Product Line or
SoS

Product Line Product Line SoS SoS SoS SoS

Distributed
System Type**

Directed Directed Acknowledged Acknowledged Acknowledged

Collaborative,
Acknowledged
(when part of

JMETC)

Can it be part of
larger SoS?

Yes For Some
LT2 Products

Yes
Yes (e.g., when
used with LVC-

IA)

Yes (but has not
occurred)

Yes Yes

**Categories come from DoD Systems Engineering Guide for Systems of Systems,
as defined below
Virtual
• No central management
• No centrally agreed upon purpose for the SoS

Collaborative
• Components interact voluntarily (no central mgmt)
• Have agreed upon central purpose

Acknowledged
• Systems engineering manager/team in place
• Shared objectives
• Individual systems retain their own funding, ownership, and mgmt

Directed
• SoS built and managed to fulfill specific purposes
• Central management over individual component systems

| 27 |

.

Comparison of Programs: Governance (1 of 2)
 LT2 OneSAF JLCCTC LVC-IA MATREX TENA

Central Management Total Total
Total for some

systems, sys eng
for others

Systems
Engineering

Aspects

Total for some sys,
sys eng for others

Connectivity
Aspects

Infrastructure
Development

Control?
Yes

Yes, but includes
integration of

external mods*
No No Some Yes

Individual
System/Component

Control?
Yes

Yes, but includes
integration of

external mods*

Yes, but includes
delivery of

external
capabilities

No Some No

Modification
Requesters (may

lead to
requirements)

User
Proponents, End

Users,
Developers

User Proponents,
End Users,

Developers*

User Proponents,
End Users,

Developers, SE

User
Proponents, End

Users,
Developers, SE

SE, User
Proponents, End

Users, Developers

User Proponents,
End Users

Requirements
Definition and
Management

Core Asset
Working Group

(CAWG)

TRADOC Program
Office’s User

Feedback Review
Board (UFRB)

Requirements
Control Board

(RCB)

Requirements
Control Board

(RCB)

M&S SWG,
Systems

Engineering
Review Board

(SERB), FOM WG

Architecture
Management
Team (AMT),
JMETC Users

Group

Requirements
Decision-Maker

Core Asset
Change Board

(CACB)

TRADOC Program
Office (TPO)

Configuration
Control Board

(CCB)

Configuration
Control Board

(CCB)

MATREX PMO,
MATREX Board of
Directors (BoD)

Architecture
Management
Team (AMT)

Translator of
Capability

Objectives**

Core Asset
Working Group

(CAWG)

Engineering
Configuration

Control Board (E-
CCB)

Systems Engineer
M&S SWG, SERB,

FOM WG

TENA Software
Development
Activity (SDA)

** PM has ultimate authority for this role, in collaboration with identified organizations

* OneSAF source code gets released to community, and changes made to the software can be considered for inclusion in the OneSAF baseline

| 28 | Comparison of Programs: Governance (2 of 2)
 LT2 OneSAF JLCCTC LVC-IA MATREX TENA

Data Exchange
Model(s)

CTIA Object Model

Simulation Object
Runtime Database

(SORD), Military
Scenario Definition
Language (MSDL)

Federation Object
Models (FOMs),

Master Enumerations,
OBS

JLCCTC Entity Resolution
Federation (ERF) 6.0

FOM, CTIA Object Model

MATREX FOM; TENA
Object Models, SORD,

DIS via ProtoCore

Multiple TENA Object
Models

Standards
Guidance

Standards in Large
Portal Repository,
including but not

limited to CTIA, FASIT,
and LTEC

Product Line
Architecture

Specification (PLAS),
Codeveloper
Guidelines

HLA, DIS, Security
Lockdown Compliance

HLA, DIS, CTIA, SIMPLE,
SECORE, Radiant Mercury

Cross-Domain Solution

SE tool (SDD) managed
architectural guidelines,

HLA 1.3 NG, via
ProtoCore (HLA 1516,

DIS, TENA, SORD)

TENA

Risk
Management

Org

Core Asset Working
Group (CAWG)

PM OneSAF’s
Integrated Product

Team (IPT)
SE

Risk Management
Working Group

Systems Engineering
Review Board (SERB)

Architecture
Management Team

(AMT)

Integrators
and Testers

Developers, Users Developers, Users SE, Developers, Users
Designated Test Team,

Users (SMEs at Validation
Events)

Designated Test Team,
Developers

 Developers, Designated
Test Team

Integration
and Test
Events

System Integration Test
and Government

Acceptance Test for
Each Product

System Integration
Test, User Assessment

Baseline (UAB),
Validation Event

Integration Event (IE),
Validation Event (VE),
Maintenance Release

Test (MRT),
Operational Readiness

Event (ORE)

User Assessment,
Functional Verification,

Operational Accreditation

Thread Test, Vignette
Test, Operational

Readiness Exercise
 Informal

Fielding
Approach

Each Product Team
Delivers and Installs at

User Sites (Products
installed

independently)

Deliver software and
instructions to user

sites; user installs and
configures based on

their needs

Deliver software and
instructions to fielding

team (CTS); fielding
team installs

Fielding Readiness
Review, On-Site Delivery
and Installation, On-Site
Government Acceptance

Test

Users download
MATREX tools from web

site or request DVD,
then install ; M&S

distributed separately

Users download
software and manuals

from web site, then
install

Post-Fielding
Support

Help Desks (one
centralized and one for

each product);
Warfighter Focus used

to Track Issues

Help Desk, Product
Line Updates,

Customer-funded on-
site support

PTR Management
Process, Patch

Management, Web
Portal (future)

NA

E-Mail reflectors, Phone
Support, Customer-

funded extensive
support

 TENA Help Desk
(middleware), JMETC

Help Desk (Connectivity),
Middleware Updates

Major Release
Frequency

Varies by Prod. Team 12-18 months 12-18 months 2 year 6 months 2-3 years

Minor Release
Frequency

Varies by Prod Team 6-8 months 6 months None None 6-12 months

| 29 |

.

Comparison of Programs:
Artifacts (1 of 2)

LT2 OneSAF JLCCTC LVC-IA MATREX TENA

Architectural
Artifacts

Product Line
Architectural

Framework (PLAF),
Common Training
Instrumentation

Architecture
(CTIA), Live

Training
Engagement
Composition

(LTEC), Future
Army System of

Integrated Targets
(FASIT)

Product Line
Architecture

Framework (PLAF)

SoS Architecture, SoS
Policy

DODAF Diagrams,
Build

Configurations (for
AVCATT, CCTT,

HITS, JLCCTC, and
OneSAF), DIACAP

templates

Systems
Engineering

Management Plan
(SEMP),

Architectural
Strategies, DODAF

views

TENA
Architecture

Reference
Document

Requirements
Artifacts

Product Line
Requirements
Specification

(PLRS), DOORS
Database,

Operational
Requirements

Document (ORD),
DATR

Product Line
Requirements
Specification

(PLRS), Formalized
requirements as

part of TPO
process, OneSAF

Component
Contract, DOORS

(previously)

Capability Production
Document (CPD),

Requirements / Rough
Order of Magnitude
(ROM) Workbook,
Integrated Task List

(ITL)

ViTech CORE
Repository,
Redmine,

Integrated Task
List (ITL), DOORS

(future), MS Office
Products

System
Requirements

Specification (SRS),
Technical Insertion

Process
Documentation

Architecture
Management
Team (AMT)
tracking lists

| 30 |

.

Comparison of Programs:
Artifacts (2 of 2)

LT2 OneSAF JLCCTC LVC-IA MATREX TENA

Design and
Development

Artifacts

Interface Control
Document (ICD),

Software
Subsystem Design
(SSD), Component

Agreement,
Service Level
Agreement

Conceptual Model,
Knowledge

Acquisition /
Knowledge
Engineering

(KA/KE) Products,
Software

Subsystem Design
(SSD)

Technical White
Papers, Interface

Control Documents
(ICDs), Event Trace

Diagrams, SoS
Architectures, SoS

Policy

LVC-IA Interface
Control Document

(ICD),
System/Subsystem
Specification (SSS)

System Design
Description (SDD),
Modeling Design
Decisions (MDD),

System/Subsystem
Specifications

(SSS), Federation
Agreements

Document (FAD)

Architecture
Management
Team (AMT)

design
presentations

Integration and
Test Artifacts

Component Test
Procedure

System Integration
Plan (SIP), V&V
Plan, T&E Plan

Integration and Test
Plan, Integration

Readiness Review
Checklist, Federation
Operations Manual,

Way Forward Briefings
(limitations and
workarounds),

Software Problem
Reports (SPR)

Database

Test and
Evaluation Plan

(TEP), Thread
Tests, Vignette

Tests, Test
Procedures

Test Plan,
Advanced Testing

Capability test
cases and reports

N/A

| 31 |

.

Comparison of Programs:
Tools (1 of 2)

 LT2 OneSAF JLCCTC LVC-IA MATREX TENA/JMETC

General
Collaboration

Tools

LT2 Portal, Gears
(for variation
management)

OneSAF Web Site JLCCTC SharePoint LVC-IA Portal MATREX
Integrated

Development
Environment (IDE)

TENA Web Site,
TENA Integrated

Development
Environment

(TIDE)

Requirements
Tools

DOORS DOORS, MS Office
Products

 PTR Tracker (NSC
maintained), MS

Excel

ViTech CORE,
Redmine, DOORS

(future)

System Design
Description (SDD)
via MATREX IDE,

(DOORS
previously used)

Design and
Development

Tools**

Varies by product Various Composer
tools, RT Tool

Visio (for SoS
architecture) ,

Event Studio (for
vignettes),

Integrated Task
List

MS Office Suite,
Visio (for arch.)

ProtoCore Gateway Builder

Integration and
Test Tools

Varies by product Performance
Modeling Tool,

Network Loader
Tool , Benchmark

Tool, SORD
Inspection Tools

Simulation
Interoperability

Test Harness (SITH),
SPR Tracker

(SharePoint),
Federation

Management Tool
Reloaded (FMT-R),
Joint Enumerations

Cross-Checker
(JECC), Perf Logger

Joint Simulation
Protocol Analyzer
(JSPA), Redmine

(for SPR tracking)

Advanced Testing
Capability (ATC)

TENA Test
Harness, Interface
Verification Tool
(IVT), WireShark,

TENA Protocol
Dissector, Joint
Interoperability

Modular
Evaluation System

(JIMES)

** Design and development tools shown here do not include the software compilers and source code CM tools

| 32 |

.

Comparison of Programs:
Tools (2 of 2)

LT2 OneSAF JLCCTC LVC-IA MATREX TENA/JMETC

Scenario
Development

Tools

Scenario
Development

Tool, Range Data
Editor

Military Scenario
Development
Environment

(MSDE),
Environment

Database
Generation

Environment
(EDGE)

 Joint Tactical
Data System

(JTDS), WARSIM
SGEN Tools

Joint Remote
Client (JRC), MSDE

(w/ OneSAF),
EDGE (w/
OneSAF),

Portable Flight
Planning Software

(PFPS)

Military Scenario
Development
Environment

(MSDE),
Configuration and

Static Analysis
Tool (CSAT)

Order of Battle
Services (OBS),

ScenGen

Data Collection
and Analysis

Tools

Observation Lite,
Event Log HITS,

Report Generator
Tool, Bookmark

Tool

Data Collection
Specification Tool

Performance
Tools, Simulation
Interoperability

Test Harness
(SITH)

Joint Simulation
Protocol Analyzer

(JSPA) , Binary
Capture Tool

hlaResults, Joint
Digital Collection,

Analysis, and
Review System

(JDCARS),
Starship Software

Product Line

SIMDIS TENA
Plugin, Reflect,

Joint Digital
Collection,

Analysis, and
Review System

(JDCARS)

Execution
Preparation/
Initialization

Range Tracking
Admin Tool,

Embedded Battle
Roster

System
Configuration and

Asset
Management Tool

(SCAMT)

Joint
Enumerations
Cross-Checker

(JECC)

Synthetic
Environment Core
(SE Core) Master
Entity List (MEL)

Tool

Configuration and
Static Analysis

Tool (CSAT)

Starship

Execution
Monitoring and

Control Tools

EXCON, Exercise
Assistant,

Playback, Replay,
Alarm and Alerts

Management &
Control Tool,
Federation

Management
Tool, Stealth Tool

Federation
Management Tool
Reloaded (FMT-

R), WARSIM
Virtual Control

 LVC-IA EXCON,
SIMDIS

hlaControl,
Starship Software

Product Line

Starship, TENA
Console, TENA

Video Distribution
System

 When a complex simulation-based system is first developed, a key
early decision is whether it will use a product line approach or an SoS
approach
– Relevant factors for this decision include:
 Anticipated lifecycle of the required solution
 Date at which an initial capability is needed
 Resources available for the initial planning and development
 Existing systems or components that can meet any of the overall system

requirements
– If the system is expected to be around for a long time and a

program can afford the initial investment, then a product line
approach may be better since long-term savings can outweigh the
initial cost

– If the system is only expected to be around for a few years, or if a
capability is needed very soon, then creation of a System of
Systems out of existing applications may be best

– This decision affects the entire life of the program!

| 33 |

.

Creating a New Complex Simulation-Based
System (1 of 2)

 As with any acquisition program, the initial requirements must be
clearly defined
– Supports the previously mentioned decision of a product line or

SoS approach
– May be satisfied through the development of new systems or

components, and/or through the identification of existing systems or
components that can be incorporated

– Will lead to development of an initial architecture
 The initial architecture must be documented accurately and

thoroughly to support future evolution of the simulation-based system
– This is especially critical for a product line, for which a Product Line

Architecture Framework defines the rules by which all developers
must play

| 34 |

.

Creating a New Complex Simulation-Based
System (2 of 2)

 The product line or SoS should be managed as an entity in and of itself
 Standards should be identified, established, publicized, and enforced to

facilitate development and integration of the necessary components
– The rigorous management, development, and adherence to

architectures, specified by architectural artifacts, are critical to all
complex simulation-based systems

– While individual systems or individual components may use their own
software approaches internally, their interfaces to other systems or
components must follow architectural specifications.

 It is critical to align acquisition strategy with implementation approach
– Example 1: In a product line, because of the desire for common core

assets, separate contractors should not be tasked with work that will
result in redundant functionality

– Example 2: In a SoS, if new or modified functionality requires
changes to more than one system, it is imperative that all systems
are funded appropriately

| 35 |

.

General Best Practices for Both Product Lines and
SoS

 To be successful, both product lines and systems of systems must invest
in O&S for the following:
– Systems engineer to manage the program lifecycle and new feature

requests
– Technical teams for development, integration, and testing to include

periodic updates of new features
– Post-fielding support
 Team in place to provide technical support and collect feedback
 Developers on contract to resolve issues quickly

 In addition, the sites that employ complex simulation-based systems may
also require dedicated staff for:
– Technical support for executing and upgrading the distributed

simulation system
– Scenario development
– Data analysis

 O&S costs can be reduced by usage of tools that allow operations to be
conducted more efficiently
– Example: automated test tools that allow testing of new functionality

without the full suite of systems in place

| 36 |

.

Operations and Support (O&S) for Product Lines
and SoS

 The product line should have a single, authoritative manager and
funding source
– A systems engineer should be appointed for product line

management, while separate managers may also exist for the
products and core assets

– The command hierarchy should be structured to allow the overall
manager of the product line to decide what changes to the core
assets are best for the overall product line

– Budgets for the product line components should include some funds
set aside for unanticipated changes required for the product line

 Management of the product line must include both management of the
core assets and management of the products
– Relationships between core assets and products must be well

understood
 Changes to a product require the modification or introduction of one or

more core assets
 Changes to core assets effect all the products in which they are used

| 37 |

.

General Best Practices for Product Lines (1 of 4)

 Development and maintenance of a Product Line Requirements
Specification (PLRS), Product Line Architecture Specification (PLAS), and
Product Line Architecture Framework (PLAF) are key for allowing new
products to be incorporated into the architecture
– The PLRS identifies core assets for use in multiple products
 This requires a long-term vision of how each core asset will be used with

current and future products
– The PLAS defines system compositions, products and components

within the product line
– The PLAF provides a view of elements in the PLAS
 It organizes and categorizes system compositions, products and

components
 Identifies functionally relevant components that can form the building blocks

for higher-level functionality
– To ensure that developers adhere to product line requirements, the

program may:
 Put specific language into contracts to ensure that developers participate in

product line governance
 Provide training to industry

| 38 |

.

General Best Practices for Product Lines (2 of 4)

 At the onset of a product line, the program manager must make a
business case for this approach
– As the product line will require a significant initial investment,

getting buy-in from the funding organization is critical
– Stakeholders may become impatient until they see results, so the

so the program manager should also consider demonstrating
some core functionality early on

– To bolster the business case, the program should also collect
metrics (e.g. lines of code, number of problem reports resolved,
time to integrate new components)

| 39 |

.

General Best Practices for Product Lines (3 of 4)

 Variation management is essential for ensuring that any changes to
the PLRS, to a product, or to a core asset result in modifications to
the dependent systems that have an overall positive impact
– Changes to PLRS, product, or core asset may, in turn, require

changes to dependent systems
– If not done correctly, these changes may “break” other systems

 When product variations are known and can be specified, the
development team should create and field the required products

 When product instances are expected to contain large variability
that cannot be anticipated by the developer, it may be best to deliver
products that can be composed and configured by the user

| 40 |

.

General Best Practices for Product Lines (4 of 4)

 The SoS should be managed as an entity in and of itself
– Establishment of a SoS Engineer
– Incorporation of systems engineering processes

 The evolution of a SoS requires a battle rhythm for evolution
– Near term 1-2 year cycles that result in fielding new versions
– Long range 5-7 year “backplane” planning
– Reevaluation of requirements, technologies, and current state of

the SoS at the top of each cycle
 System synchronization is the job of the SoS Engineer

– Replan throughout the cycle to resynchronize as inevitable slips
or priority changes occur

– Capture resultant SoS and shortfalls to:
 Ensure testing is focused on what is actually delivered
 Capture shortfalls that need to feed back as potential requirements for

the next cycle

| 41 |

.

General Best Practices for SoS (1 of 2)

 The SoS should be decomposed into functional areas that can be
decoupled from the rest of the SoS to the extent possible
– This allows work on different functional areas in parallel within a

cycle
– Changes in one functional area should have no or limited impact on

the rest of the SoS
– SoS Engineer should plan individual system delivery and SoS

integration activity in functional area lanes
 The design and documentation of the SoS should be modified at

each cycle
– This includes conceptual models, SoS composition, infrastructure,

and data exchange model
 Systems engineering processes are needed for each phase of the

SoS lifecycle, as well as for the conduct of events that employ the
SoS

| 42 |

.

General Best Practices for SoS (2 of 2)

 Subsequent slides contain some of the best practices for:
– Managing the maintenance and evolution of a complex simulation-

based system
 Requirements definition
 Converting product line or SoS requirements into individual component

requirements or individual system requirements, respectively
 Defining standards and providing guidance for implementing changes
 Testing and validating the complex simulation-based system
 Fielding the complex simulation-based system

– Usage of a complex simulation-based system
 Pre-event activities
 Initialization
 Execution
 Data collection
 Post-event activities

The information on the ensuing slides is relevant to both product lines
and systems of systems, unless explicitly stated otherwise

| 43 |

.

Specific Best Practices

 Users, testers, and developers should have a mechanism for
submitting problem reports

 Sponsors and other stakeholders should have a mechanism for
defining high-level direction

 Users groups provide a useful forum for identifying issues and their
associated priorities

 There must be a clearly defined process for narrowing down
requirements to fit within funding constraints

 A systems engineering team should manage a tracking system for
all requirements and their associated status
– This requires collaboration with users, developers, and testers

 For product lines, requirements outline should be reflective of the
product line architecture
– Supports the requirements allocation process
– Supports explicit recognition of common core assets

| 44 |

.

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Requirements Definition

 For each requirement, the systems engineer works
– With persons who submit a problem report or enhancement request to fully

understand the issue
– With users to understand the priority
– With developers to understand possible solutions

 For a product line, the systems engineer works with the product developer to
determine which core assets require modification to achieve the desired capability

 For a SoS, the systems engineer manages the development of one or more concepts
for meeting a SoS requirement
– For each option, developers of each system that would be added or changed must

provide a high-level design and ROM
– Interoperability challenges must be overcome via detailed dialogue between

developers and the systems engineer
 Use of a common object model and agreed upon protocol is a small part of this
 More engineering is required to work out a meaningful data exchange

– Semantic understanding of object representation (meaning, why and when)
– Federation/SoS runtime agreements (update frequency, dead reckoning)
– Fidelity and resolution matches across simulations
– Data correlation (terrain, weather, damage effects)

– Ideally, a design meeting attended by all stakeholders can be conducted to assess
each change proposal

| 45

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Converting Product Line or SoS Requirements into

Requirements for Individual Components/Systems (1 of 2)

 Determination of whether or not to resolve an issue in the next
release depends on its priority, risk to the rest of the system, and
resources required to implement the change
– The solution should meet the user requirement while minimizing

complexity
– To reduce cost of collaboration, it is best for a solution to use

components/systems that are already part of the product line / SoS
 For changes that will proceed, specific tasking is documented for

each of the individual components/systems being changed or added
– For an SoS, this should also include a schedule for the test and

integration of the change to the SoS
– For a product line, the modification of core assets should include an

assessment of how it impacts each product that uses the core
asset, as well as a test schedule for the effected products

| 46

.

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Converting Product Line or SoS Requirements into

Requirements for Individual Components/Systems (2 of 2)

 Interfaces between individual systems must be well documented,
using some combination of the following:
– Data exchange model
– Interface Control Document
– Sequence diagrams
– Vignettes that consist of event trace diagrams for new functionality
– Use cases

 Use cases drive decisions associated with deployment and
composability
– A user might select an “as is” representation of an object or

behavior, or the user may compose the object or behavior
– If the simulation is to be composable, then the system must be

flexible enough to support this, and tools must be provided to the
user for composition

| 47

.

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Defining Standards and Providing
Guidance for Implementing Changes (1 of 2)

 For a product line, the interface of product components should be
documented in a Product Line Requirements Specification (PLRS)
– Complexity of the PLRS should be carefully managed
 Low complexity  fewer burdens on core assets, but more constraining

to functionality that can be achieved

 High complexity  greater flexibility for new functionality, but increases
difficulty of creating and maintaining core assets

 Tools can facilitate implementation, such as:
– Code generation tools that are based on the data exchange model

and the middleware protocol
 This is especially helpful for SoS environments that contain legacy

systems that were not originally built for interoperability with other
systems in the SoS

– Repositories of architecture specifications and other standards

| 48

.

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Defining Standards and Providing
Guidance for Implementing Changes (2 of 2)

 For an SoS, integration events should be conducted to assess
functionality and interfaces associated with each new SoS version
– Prior to large integration and test events, the systems engineer should

publish test objectives, data model, and any changes to the
infrastructure

– The systems engineer may provide automated tools to allow individual
components to test interfaces with surrogate software (example:
MATREX’s ATC tool, JLCCTC’s SITH tool)

– The validating user should provide SoS test cases
– The systems engineer should work with the developers ahead of time

to ensure what new functionality is mature enough for assessment at
the formal test event
 The system engineer may conduct readiness reviews in which small tests are

conducted at individual sites
 For a product line, separate testing can be conducted to assess

functionality of each product
– Each product may be released individually, so it is not always

necessary to test the entire product line

| 49

.

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Testing and Validating the Product
Line or SoS (1 of 3)

 Testing should be conducted by an independent agent
– Avoids any conflict of interest
– Interoperability issues can be assessed fairly, without trying to

make any particular system or component look better
 For simple issues, can lead to quick modifications or workarounds if the

neutral party is empowered to provide on-site solutions, in collaboration
with the developers representing the different components or systems

 Integration testing incorporates increasing complexity (number of
systems, number of interfaces) prior to system-wide integration and
formal testing

 Formal testing may consist of a series of events of increasing
importance:
– Integration event
– Validation event
– Government Acceptance Test

| 50

.

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Testing and Validating the Product
Line or SoS (2 of 3)

 During formal test and integration events, the following should occur:
– Training should be provided to testers from the developers and

possibly from the systems engineer
– At the start of the event, known problem areas and workarounds

should be communicated to avoid wasting testing time
– Testing should follow well-documented procedures, and pass/fail of

individual steps should be based on well-defined acceptability criteria
– Problem reports are generated by testers and tracked by the systems

engineer
– In addition to functional testing, performance testing should be

conducted to identify any bottlenecks in the product line or SoS
– Regression testing should also be conducted to ensure that prior

functionality still works correctly
 After final test:

– Systems engineer assesses results and determines what will be
included in the product or SoS version that gets released

| 51

.

Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Testing and Validating the Product
Line or SoS (3 of 3)

 For a product line, individual products can be fielded at separate
times to the sites that will use them
– The systems engineer should track which versions of which

products have been installed at which sites
 For an SoS, the entire SoS gets fielded

– The systems engineer should track where different versions of the
SoS have been fielded

 Based on the complexity of a product or an SoS, different fielding
approaches have worked:
– Deliver software and documentation to site; user installs
– Designated fielding team goes to site to deliver and install system
– Designated fielding team conducts on-site survey, installs software

on-site, and then conducts a formal test at the site

| 52 Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Fielding the Product Line or SoS (1 of
2)

 The program must determine the type of software delivered to the user
– If users are empowered with developing representations of new object types or

new behaviors, then the delivered software must include appropriate tools for
composing new objects and new behaviors
 Mechanisms should also be in place to leverage the composition work from different

users for contribution to the overall program
 For instance, programs for which different platforms can be defined by users should

maintain a repository of these representations, so that they can be reused within the
user community

– A program may also want to release source code to users and allow them to
make changes
 in this case, the program should have a mechanism to assess modified software

modules for possible integration into the software baseline

 It is critical that technical support be provided to the user
– This is true for post-fielding support, as well as for installation support when the

product or SoS is not being installed for the user site
– This can come from the developer and the systems engineering team

 The systems engineer should also have a mechanism for collecting user feedback
after the system has been fielded

 Mechanisms should exist to provide maintenance releases or patches when
critical problems are discovered

| 53 Managing the Maintenance and Evolution of a Product Line or SoS

Best Practices for Fielding the Product Line or SoS (2 of
2)

 First, the objectives for the event should be clearly defined
 Next, to meet the objectives, the concept of usage must be agreed to

at a high level, including:
– Timeframe and geographic area to be represented
– Military entities (platforms, organizational units) to be represented
– Whether the entities will be represented in live, virtual, or

constructive simulations
– Missions and associated OPTEMPO
– Events to occur in the execution
– Live platforms and C4I systems to be stimulated
– Data to be collected

 For composable environments, the specific set of components or
systems to be used must be decided based on the usage concept,
and tools must be available for the composition

| 54

.

Managing the Usage of a Product or SoS
Best Practices for Pre-Event Activities (1 of 2)

 Composition may also be required for object and behavior representation
– Scenario developers should first determine if the desired representation of an

object or behavior already exists, or is close enough to meet the objectives of
the event

– If not, the closest representation of the desired capability should be identified
and then modified to reduce composition time

– If a system is developed with the flexibility for a user to compose objects and
behaviors, then tools should exist to facilitate the composition.

 The use concept also drives the installation and configuration required for the
complex simulation-based event
– The number of instances of a simulation and the configuration of those

instances depends on the required types and quantities of entities, the events
to be injected, and the C4I systems for which data is generated

 To reduce scenario creation time, scenario developers should
– Leverage information from existing databases
– Use automated scenario development tools, if available

 To the extent possible, automated tools should identify any problems with
scenario data and with data interfaces prior to investing time in event execution
and analysis

| 55

.

Managing the Usage of a Product or SoS
Best Practices for Pre-Event Activities (2 of 2)

 For environments in which the ordering of component initialization is
important, the sequence of initialization events should be well
documented
– This requires an understanding of the dependencies among

systems
– A system cannot be invoked prior to the invocation of another

system upon which it relies
 Mechanisms should exist to ensure that all components are

successfully initialized before proceeding with execution
– All individual systems are up and ready
– Data collection is configured to record data that meets the

objectives of the run

| 56

.

Managing the Usage of a Product or SoS
Best Practices for Product/SoS Initialization

 Simulation control should be managed by one or more persons to:
– Direct the starting and stopping of components
– Manage injection of events
– Save and restore data (if applicable)

 Due to the complexity of distributed simulation environments, monitoring
tools should be used to check the health and status of all components
– Ensure needed processes are running
– Check data unique to the product or SoS, as in the following

examples:
 Ensure that individual systems instantiate the correct types and numbers of

objects
 Ensure data passed over infrastructure conforms to standards
 Ensure C4I systems are continually updated with simulation-generated data

– Monitor computing resources (CPU, disk usage, etc.)

| 57

.

Managing the Usage of a Product or SoS
Best Practices for Product/SoS Execution

 To support after-action analysis, data should be automatically
recorded
– Data that passes through a common infrastructure can be

captured by a specialized data collection system
– Individual components may also capture data internally, but they

should use a consistent time stamp to ensure the data can be
assessed along with federation-wide data, if necessary

 Some real-time data analysis for an execution in progress can be
useful for ensuring a run is proceeding normally or for taking
remedial action

| 58

.

Managing the Usage of a Product or SoS
Best Practices for Product/SoS Data Collection

 Captured data should be archived to prevent information loss
 Participants should provide feedback while knowledge from the run

is still fresh:
– Feedback on operational aspects of the scenario
– Feedback on how the technical systems performed
– The systems engineer may arrange to do this in a “hot wash”

event in which all participants meet at event completion
 Based on feedback from a run, identify limitations and workarounds

to be addressed or documented

| 59

.

Managing the Usage of a Product or SoS
Best Practices for Post-Event Activities

 Management of artifacts using basic Microsoft Office products is
error-prone

 An automated, data-driven approach is recommended
– Establishes associations between different elements
 Example: links between requirements, software design, and test plans
 Associations allow for reuse via pointers to information (updates to

information in one place updates all references)
 Can support automatic generation of artifacts via data queries

(Examples: SSS, pub/sub matrix)
 Allows for workflow management by the data-driven system as

opposed to manually

– All users access the same version of the product line or SoS,
reducing configuration management difficulties

– Ensures unique IDs for PTRs, requirements, etc.

| 60 |

Management of Artifacts

